
SCTuner: An Auto-tuner Addressing Dynamic I/O
Needs on Supercomputer I/O Sub-systems

Houjun Tang∗‡ Bing Xie∗† Suren Byna‡ Philip Carns§ Quincey Koziol‡ Sudarsun Kannan¶ Jay Lofstead‖ Sarp Oral†
† Oak Ridge National Laboratory, ‡ Lawrence Berkeley National Laboratory, § Argonne National Laboratory

¶ Rutgers University, ‖ Sandia National Laboratories

Abstract—In HPC, scientific applications often manage a
massive amount of data using I/O libraries. These libraries
provide convenient data model abstractions, help ensure data
portability, and most importantly empower end users to improve
I/O performance by tuning configurations across multiple layers
of the HPC I/O stack. This work proposes SCTuner, an auto-
tuner integrated within I/O library itself to dynamically tune
both the I/O library and the underlying I/O stack at application
runtime. To this end, we introduce a statistical benchmarking
method to profile the behaviors of individual supercomputer I/O
sub-systems with varied configurations across I/O layers. We use
the benchmarking results as the built-in knowledge in SCTuner,
implement an I/O pattern extractor and plan to implement an
online performance tuner as the SCTuner runtime. We conducted
a benchmarking analysis on the Summit supercomputer and its
GPFS file system Alpine. The preliminary results show that our
method can effectively extract the consistent I/O behaviors of the
target system under production load, building the base for I/O
auto-tuning at application runtime.

I. INTRODUCTION

On high-performance computing (HPC) platforms, I/O sub-
systems are built around scientific applications. These appli-
cations may execute on hundreds of thousands of CPU/GPU
cores and analyze/generate tens of TBs to several PBs of
data periodically. Ranging from climate modeling to drug
discovery, the computation of scientific applications is often
forced to stall due to the increasing performance gap between
the computational speed in supercomputers and the bandwidth
capacity of their I/O sub-systems. It is crucial for software to
make efficient use of I/O bandwidth and accelerate application
executions accordingly.

At HPC facilities, scientists usually manage data via I/O
libraries, such as HDF5 [1], ADIOS [2], and PnetCDF [3].
These libraries support a rich variety of data structures and
maneuver toward high throughput by tuning the parameters
across multiple I/O layers. For instance, HDF5 provides par-
allel I/O services via MPI-IO to leverage optimized interfaces
for parallel file systems (e.g., Lustre [4] and GPFS [5]).
Accordingly, HDF5 users can specify configurations for HDF5
internals (e.g., HDF5 metadata management), MPI-IO (e.g.,
through MPI Info object) and file systems (e.g., data layout
on Lustre) as well. Ideally, end users can obtain high I/O
throughput by tuning the multi-layer configurations on their
own. In practice, due to a lack of expert knowledge, most users
simply rely on the I/O library defaults, which typically select

∗Equal contribution.

configurations based on heuristics rather than perspectives
from applications.

There is a lack of a unified I/O tuning framework at
HPC scale that can handle all critical requirements toward
performance optimization, such as online tuning (i.e., during
application runtime), tune across layers of the complex HPC
I/O stack, and dynamically adapt to changing I/O needs
and performance variations of the target applications and
file systems. As is shown in Table I, prior HPC-scale I/O
tuning efforts are mainly dependent on static heuristics and
techniques [6], [7] or offline information characterized from
benchmarking [8] and modeling [9], [10]. Other proposals [11]
collected the interactions between applications and the un-
derlying file systems at application runtime, and proposed
an auto-tuner to optimize I/O across layers, but the proposal
was limited to optimized memory use of file systems [12]. A
recent study [13] auto-tuned the performance of HPC storage
systems with neural networks, but their use is still limited to
small-scale systems. For I/O tuning in enterprise datacenters,
recent studies [14], [15] auto-tuned the parameters in storage
systems by sampling and reducing tuning parameter greedily.
Furthermore, Bhimani et al. [16] employed reinforcement
learning to auto-tune the parameters of SSDs. These efforts
invented I/O tuning frameworks to fine-tune the performance
of specific storage systems or devices, but lack the capability
to address the dynamic I/O needs of applications at runtime.

To overcome the limitations of prior solutions, we design
SCientific I/O Tuner (SCTuner), a generic solution to auto-tune
parameters across I/O layers transparently and dynamically.
At the heart of our solution, SCTuner realizes dynamic tuning
within I/O libraries in two steps. First, SCTuner introduces
a generic benchmarking method to profile the behaviors of
supercomputer I/O sub-systems with varied configurations
across I/O layers scaling up to thousands of cores, and
builds performance models in SCTuner based on the profiling
knowledge. Second, as part of SCTuner’s runtime, we extracts
I/O patterns (e.g., number of nodes and cores in use, data
size per core, etc) and their performance, adapt the models
to the observed performance variations, and determines the
corresponding configurations for the entire I/O stack.

SCTuner serves as the first step toward dynamic I/O auto-
tuning for HPC applications at scale without requiring ap-
plication changes. We implement SCTuner within HDF5 and
apply our benchmarking method on Summit and its GPFS file



TABLE I: SCTuner vs. existing I/O auto-tuners.

I/O
Auto-tuner

HPC
Scale

Online
Tuning

Cross-layer.
Tuning

Dynamic
Optimization

SCTuner X X X X

[6], [7] X X

[8], [11], [9], H5Tuner [10] X X X

[12], CAPES [13] X X

[14], Carver [15],PatIO [16] X

system Alpine [17]. We present the results and analysis of
our benchmarking approach. In particular, we observed that
the performance of I/O reads in the target environment is
highly variable, suggesting the necessities on the dynamic I/O
tuner such as SCTuner. For I/O writes, some configurations
obtain consistently high performance, suggesting an effective
I/O tuner can bring significant performance improvement to
applications.

In summary, we implemented an I/O pattern extractor in
HDF5 and plan to realize an online performance tuner in
HDF5 asynchronous I/O VOL connector [18] (discussed in
III-C). While our initial SCTuner prototype is implemented
and integrated with HDF5 for benchmarking and auto-tuning,
we believe that SCTuner can be easily applied and integrated
into other HPC I/O libraries and file systems.

II. HPC I/O STACK

A. Scientific I/O in Production Codes
HPC platforms support a wide range of applications, in-

cluding traditional numerical simulations and Deep Neural
Networks (DNNs) applications [19], [20], [21]. Scientists
submit their computational work as a batch job to utilize the
compute power of a supercomputer. These jobs often execute
iterative computations on CPUs/GPUs and process/produce
data periodically for resilience (checkpointing) and future data
analysis about the physics evolution models.

In general, applications perform I/O for different purposes
and with various I/O patterns. For a given application, end-
users may execute it in different jobs each with different
computation and I/O scales. For example, numerical simula-
tions that solve a fixed-space problem, such as (XGC [22])
execute the numerical solver iteratively, and process/produce
equal-sized synchronous bursts of I/O. It has four I/O patterns
with three for intermediate results (1KB — 10MB of data per
core) and one for checkpointing (100MB — 1GB of data per
core) [23], [24]. Moreover, machine learning (ML) and deep
learning (DL) applications are iterative and exhibit multiple
I/O patterns for staging, shuffling, and checkpointing, respec-
tively. For example, a typical DL training code runs on a group
of GPU accelerators that read equal-sized data, shuffle and
read them periodically, and produce writes for checkpointing
and/or post-processing based on a pre-configured frequency.
Across DNN models and I/O scales, the typical I/O burst size
per GPU could vary from several KBs to several GBs.
Observation 1 . There exist different applications and I/O
patterns on supercomputers, exhibiting different I/O perfor-

mance needs at application runtime.

B. Supercomputer I/O Subsystems
Summit, the 2nd fastest supercomputer in the world, is

housed at the Oak Ridge Leadership Computing Facility
(OLCF). It consists of 4,608 compute nodes, each node con-
taining 42 CPUs and 6 GPUs. Summit is connected to Alpine,
the center-wide GPFS file system, comprised of 154 Network
Shared Disk (NSD) servers. Users have no control over data
layout on GPFS deployments, where the block size (GPFS
block size) per NSD is configured at file system creation time.
For Alpine, the block size is 16MB.

Beyond these systems, other parallel file systems (PFS) such
as Mira-FS [25] uses a smaller block size of 8MB, whereas
other PFSes (e.g., Lustre) allow users to configure the number
of storage targets (stripe count) and the data size per target
(stripe size). In general, as concluded by prior studies [26],
[27], [23], [28], [29], [24], all PFS show high performance
variability and the variability could change over time [30].

At many HPC facilities, burst buffer [31] is deployed as
another storage tier. Using node-local NVMe technology, burst
buffers create an independent file system for each job to
store its temporary data with high I/O bandwidth during job
execution time. It is expected that, burst buffers at different
facilities are deployed with different storage technologies and
are managed by different file system software.
Observation 2 . Different file systems have different hard-
ware, are deployed with different file system software, and in
most cases, are configured differently.

C. I/O Libraries in HPC
A key attribute of HPC I/O runtimes, in contrast to tradi-

tional datacenter I/O file systems and object stores, is the flex-
ibility in allowing applications to customize the data structures
that support data and metadata management, I/O work and data
sharing policies across thousands of processes. Consequently,
flexible runtimes increase the complexity of auto-tuning.

For instance, on HPC platforms, many scientists choose
HDF5, a self-describing file format and I/O library [1], to
manage their data as it provides flexibility, extendibility, and
portability. HDF5 realizes parallel I/O operations via MPI-IO
APIs. MPI-IO, in turn, uses POSIX-IO APIs to communicate
with the underlying supercomputer I/O storage system. Within
HDF5, end users can use either independent MPI-IO calls
or collective MPI-IO calls to process read/write operations
on their HDF5 files. Moreover, once they choose to use
collective I/O, they can further determine the relative MPI-IO
configurations, such as the number of read/write aggregators
and the buffer size per aggregator. Moreover, HDF5 also
provides APIs to let users configure their data layout on the
PFSes such like Lustre and BeeGFS [32].

In general, a typical HPC I/O library serves as a higher-level
abstraction and provides uniform I/O interfaces for various
data structures. It allows end users to set their own config-
urations on the I/O layers via the library-specific interfaces.
Unfortunately, as a lack of I/O knowledge, end users of these
libraries usually choose the default configurations that are

2



determined by simple heuristics and usually fail to address
dynamic I/O patterns and performance needs across times.
Observation 3 . HPC systems empower end users to con-
figure and customize different layers of I/O stack. However,
most users would stick to the default configurations which
could result in far-from-ideal I/O performance.

D. Related Work

In HPC, deeper software and hardware I/O stack combined
with a rich set of I/O libraries such as HDF5 [1], ADIOS
[2], and PnetCDF [3] that rely on MPI-IO and POSIX-IO
complicates I/O tuning. Prior work [7] evaluated the setting
of several HDF5 tuning parameters such as chunked dataset
alignment and metadata flush configurations with the Lustre
file system. Other studies explored tuning I/O parameters using
genetic algorithms, and performance modeling [8], [9], [10].
On the MPI-IO level, collective I/O [33], [34] allows users
to provide a set of hints that inform the library regarding the
access patterns for runtime optimization. Additionally, Lustre
allows users to customize their file layout on storage devices
with the striping parameters setting. [35], [27], [36], [28]
found that properly setting striping parameters result in multi-
fold performance improvements.

While these approaches focus on optimizing specific I/O
workloads, they demand I/O expertise from users, scientists,
and developers. In contrast, our work, SCTuner, uses a bench-
marking method to systematically profile the performance for
various access patterns and use the gained knowledge to tune
parameters without users’ input automatically. Further, unlike
prior work for data-centric storage [15], [14], our work is
focused on an extreme scale.

III. AUTOTUNING I/O IN HPC
Shown in Figure 1, SCTuner is an auto-tuner for scientific

I/O on production supercomputers. Motivated by the diverse
I/O patterns in the target applications (Obs. 1 ) and the
great disparity in the target systems (Obs. 2 ), we conduct
I/O benchmarks for target I/O sub-systems. Leveraging the
benchmarking results, we integrate SCTuner into HPC I/O
libraries, as they generally support parameter configurations
across layers in the HPC I/O stack (Obs. 3 ). We use the
benchmarking results to build performance models. We extract
I/O patterns and performance variations at application runtime,
and use this information to adapt the models and determine
the best values of the tuning parameters.

In this work, we integrate SCTuner into HDF5 as an
example to demonstrate its functionalities. We realized our
benchmarking method and devloped the I/O pattern extractor
in HDF5 and applied it on Summit’s I/O sub-system. The pre-
liminary results show that our proposed benchmarking method
can effectively identify the consistently good configurations in
a highly variable production environment. Although SCTuner
is currently integrated in HDF5 and tested on Summit and
Alpine, we believe our benchmarking method and the SCTuner
runtime can be easily applied to other HPC I/O libraries and
other supercomputer I/O sub-systems.

A. A Statistical I/O Benchmarking Method
Design Principles: We follow three design principles. (1) To
address the dissimilarity in the target systems, we design
benchmarking experiments to profile the I/O behaviors of
individual systems. (2) To address I/O patterns presented
in scientific codes, we use IOR [37]) as an I/O pattern
generator that covers a wide range of burst sizes and I/O
scales. (3) To capture consistent behaviors from noise and
randomness, we repeat the experiments and characterize the
results by five-number summary [38] and clustering.
1) I/O benchmarking

For an I/O library on a given I/O sub-system, we design a
group of controlled experiments, each exercising IOR with an
I/O pattern and a set of tuning parameters across I/O layers.

To achieve a low core-hour consumption and low impact on
production systems, we perform the experiments on small to
medium scales (2—1344 cores) as they can effectively reflect
the large-scale behaviors [23], [24]. To attain good coverage
on burst sizes, we strategically choose burst-size ranges and
randomly produce bursts in each chosen range. We consider
bursts in a wide range: 1KB—4GB aggregate data per node.
To guarantee balanced burst-size coverage, we break it into
6 ranges (Column 3 in Table II), and generate 20 random
burst sizes for each range. Similarly, for each I/O scale, we
randomly choose the number of cores per node (Column 2
in Table II). For HDF5 on Summit/Alpine, the configurable
layer is MPI-IO. We alternate the configurations between
independent I/O and collective I/O, and further vary the values
of the collective I/O parameters. Columns 4 and 5 in Table II
address the collective I/O configurations in detail. In general,
we choose the burst-size range and the values for collective
I/O parameters in consideration of production use [23], [29],
[24] and Alpine’s GPFS block size setting (16MB).

We submit the experiments as regular supercomputer jobs.
After a job starts, it reads a job description file, which specifies
the IOR executions for specific burst size and a specific
number of nodes/cores in use with a multi-level for-loop. Each
loop varies the values of an IOR parameter on an I/O layer.
We submit each such job many times and execute one at a
time to avoid self-interference.

Each job includes a number of IOR executions for one I/O
pattern across the same set of varying configurations. Each
execution simulates a typical I/O pattern: in an execution,
the synchronous processes read/write a single shared file. In
particular, a number of benchmark processes each issue a
file open, a read or write system call, and a file close in a
sequence. The processes are synchronized with MPI barriers
before file open and after file close. To avoid read/write-cache
effects, each job only executes one read or one write for an
I/O pattern across the entire I/O configuration settings. We
collected the end-to-end performance from the minimum of
file open to the maximum of file close among the bursts.
2) Statistical analysis

For each IOR execution, we normalize its performance to
the best observed from the I/O pattern and accordingly get

3



Fig. 1: Key components of SCTuner integrated into HPC I/O libraries

a relative performance measure in 0—1 for the associated
configuration. Clearly, a higher measure suggests a better
performance delivered by the configuration. We execute each
configuration on each experiment repeatedly, normalize the
performance of the repeated IOR executions, and characterize
the normalized repetitions using five-number summary (the
minimum, lower quartile, median value, upper quartile, maxi-
mum). We use hierarchical clustering to group the five-number
summaries across scales, I/O patterns and configurations.

B. SCTuner Runtime

The SCTuner runtime includes three major components:
performance models, an I/O pattern extractor and a perfor-
mance tuner. Here, each model is built on the benchmarking
results of a supercomputer I/O sub-system.

We implement the I/O pattern extractor in HDF5. In par-
ticular, when a file is opened for the first time, we extract
the information of I/O patterns (e.g., the numbers of compute
nodes in use, the number of MPI ranks, the configurations of
the underlying file system, etc.). When a parallel I/O call is
issued, we extract the per-rank burst size, the starting offset of
each burst, as well as the aggregate data size. When an I/O call
completes, the extractor also collects the performance related
information, and passes the information to the performance
tuner. In particular, for an I/O read call, the completion means
the data is fetched to the client’s memory (in compute node) of
the file system; for an I/O write call, the completion indicates
the data is committed to the storage system disks.

To address the performance variability in the target environ-
ment, the performance tuner adapts the model to the observed
online performance data. Online performance modeling (e.g.,
online gradient descent method [39]) has been used in dynamic
resource management in cloud [40]. In this work, we plan to
use similar techniques to address I/O performance variations
at application runtime. Moreover, when receiving an I/O call,
the performance tuner executes the updated model with the
collected I/O pattern and sets parameters across I/O layers
accordingly.

C. Dynamic Parameter Setting

Similar to other HPC I/O libraries, HDF5 provides APIs
to let end users tune the parameters across the I/O software
stack. For example, H5Pset_mdc_config allows defer-
ring the HDF5 metadata cache flush until file close time,

TABLE II: Varying parameters in benchmarking experiments

#nodes
(m)

Cores per
Node (n)

Burst Size (K) Aggregators (na) Buffer Size (BS)

2, 4, 8, 16,
32

1—42 1KB—4MB, 4MB—
16MB, 16MB—64MB,
64MB—256MB,
256MB—1GB, 1GB—
4GB

1
4
n, 1

2
n, n, 2n, 4n 1M, 4M, 16M,

64M, 256M

H5Pset_coll_metadata_write enables collective I/O
for HDF5 metadata read and write, H5Pset_fapl_mpio
and MPI_Info_set supports the settings on MPI-IO.

Dynamic parameter setting is challenging as many of the
tuning parameters in MPI-IO must be set before the file open.
Without the user’s input, we have no knowledge of the future
I/O patterns at the parameter setting time. To address this
issue, we build the tuning function on HDF5 asynchronous
I/O VOL connector (async VOL) [18], in which I/O operations
are queued and executed asynchronously. In other words, with
async VOL, we delay the execution on file open until we know
the exact I/O operations on the exact I/O patterns. Another
challenge comes from the dynamic nature of scientific I/O.
As is discussed in §II-A, a typical scientific code performs I/O
by following several I/O patterns, and each may benefit from
different configurations. To address this dynamism, we may
take a close-reopen approach to change the values of tuning
parameters if we see the reset obtains performance gain.

IV. PRELIMINARY RESULTS

We present the benchmarking results collected from Summit
(§II-B). We plan to integrate such results from each specific
I/O sub-system into SCTuner to build performance models
and dynamically tune the parameters across I/O layers at
application runtime.

A. Experiment Setup
We generate I/O patterns and the values of configurable pa-

rameters by following the benchmarking method in (§III-A1).
Table II reports the varying parameters and values in detail.

For each I/O scale, we generate 120 I/O patterns across
compute cores and burst sizes, and use each pattern to bench-
mark both read and write operations. For each I/O pattern,
we perform IOR with 27 MPI-IO configurations, including
independent I/O, the default collective I/O configuration on
Summit, and the 25 specified configurations given in Table II.
Across scales, we collected overall 12,960 (4x120x27) bench-
marking measures. Each measure is a five-number summary
characterized from 9-12 repeated IOR executions for a specific
MPI-IO configuration on a specific I/O pattern.

B. Clustering Results
Figures 2(a) and 2(d) report the dendrograms of hierarchical

clustering with agglomerative (bottom-up clustering) for the
five-point summary values. We determine the number of
clusters using two commonly used metrics: Ward’s linkage
and Euclidean distance. In summary, we identified 6 clusters
for read and 5 clusters for write.

Figures 2(b) and 2(e) report the read and write performance
of individual five-number summaries, each associated with a
specific parameter set, pattern, and scale. In the two figures,
a line represents the minimum values, or lower quartile, or

4



(a) Dendrogram for read (b) Clustered five-number summary for read (c) Write performance for na =8, BK=16MB on
32 compute nodes

(d) Dendrogram for write (e) Clustered five-number summary for write (f) Write performance for na =128, BK=16MB
on 32 compute nodes

Fig. 2: Result Summary for the Statistical Benchmarking Method. In Figures 2(c) and 2(f), the x-axis is sorted based on the aggregate data size of an I/O
pattern; the y-axis represents the cluster of a pattern.

median value, or upper quartile, or maxi-mum values. We sort
the clusters first based on the mean value and then further sort
the measures within a cluster based on their maximum values.

Based on Figures 2(b) and 2(e), we summarize the obser-
vations into three points: (1) For both read and write, certain
MPI-IO configurations consistently deliver poor performance.
In particular, in clusters 0 and 1, the maximum values are
<57% (for read) and <61% (for write) of the peak band-
widths, respectively. (2) For read, the performance of the
target environment is highly variable. For any configuration
on any I/O pattern, the read performance varies in a wide
range of 7% — 100% of the peak, suggesting the necessities
on the dynamic I/O tuner such as SCTuner. (3) For write,
some configurations obtain consistently high performance. In
clusters 3 and 4 for write, the minimum values are >36%
and >42% of the peak write performance. Peak performance
is the observed maximum I/O throughput for all read or
write experiments. This also suggests that our benchmarking
method can identify the consistent behaviors of good I/O
configurations for an HPC system that is useful for runtime
configuration.

C. Configuration Results

Due to the space limitation, we show the effectiveness of
our benchmarking method using the results of two individual
configurations. Figures 2(c) and 2(f) report the clustering
results for write on the scale of 32 compute nodes, configured
with 16MB buffer size per aggregator, and using 8 aggrega-
tors and 128 aggregators respectively. We choose these two

configurations as they show clearly that different I/O patterns
benefit from different configurations.

In particular, for small writes in the range of 11.81MB—
2.23GB, when using 8 aggregators, 92.6% of the I/O pat-
terns are categorized into clusters 3 and 4 (high performance
clusters), and for larger writes (>2.23GB), the same configu-
ration performs poorly with no measure in clusters 3 or 4.
On the contrary, when using 128 aggregators on the large
writes (>2.23GB), only one measure falls in cluster 2 (low
performance cluster). It is clear that, small writes benefit from
aggressive I/O aggregation as it results in larger writes and is
more efficient. On the other hand, large writes benefit from
independent I/O as they can obtain the efficient use of I/O
bandwidth. Undoubtedly, this information is useful to tune the
I/O configurations at runtime.

V. CONCLUSION

This work proposes SCTuner, an auto-tuner built in I/O
libaries to tune I/O parameters at runtime. To this end, we
introduce a statistical benchmarking method to profile the
behaviors of individual supercomputer I/O sub-systems. We
implemented the runtime I/O pattern extractor and plan to re-
alize performance models and the online performance tuner in
the near future. We conducted benchmarking experiments on
Summit supercomputer and its GPFS file system Alpine. The
results show that our benchmarking method can effectively
extract the consistent I/O behaviors of the target systems.

REFERENCES

[1] The HDF Group, “HDF5,” https://www.hdfgroup.org/solutions/hdf5/.

5

https://www.hdfgroup.org/solutions/hdf5/


[2] ADIOS team at ORNL, “The Adaptable I/O System,” https://csmd.ornl.
gov/adios.

[3] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netcdf:
A high-performance scientific i/o interface,” in SC, 2003, pp. 39–39.

[4] P. Braam, “The Lustre storage architecture,” arXiv preprint
arXiv:1903.01955, 2019.

[5] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters,” in FAST, vol. 2, no. 19, 2002.

[6] S. Byna, M. Chaarawi, Q. Koziol, J. Mainzer, and F. Willmore, “Tuning
HDF5 subfiling performance on parallel file systems,” CUG, 2017.

[7] M. Howison, “Tuning HDF5 for Lustre File Systems,” IASDS, 2010.
[8] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,

Q. Koziol, and M. Snir, “Taming parallel i/o complexity with auto-
tuning,” in SC, 2013.

[9] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and M. Snir, “Improving
parallel i/o autotuning with performance modeling,” in HPDC, 2014, p.
253–256.

[10] B. Behzad, S. Byna, and M. Snir, “Optimizing I/O performance of
HPC applications with autotuning,” ACM Transactions on Parallel
Computing, vol. 5, no. 4, pp. 1–27, 2019.

[11] S. J. Kim, S. W. Son, W.-k. Liao, M. Kandemir, R. Thakur, and
A. Choudhary, “IOPin: Runtime profiling of parallel I/O in HPC
systems,” in 2012 SC Companion: High Performance Computing, Net-
working Storage and Analysis PDSW’12. IEEE, 2012, pp. 18–23.

[12] N. Watkins, Z. Jia, G. Shipman, C. Maltzahn, A. Aiken, and P. Mc-
Cormick, “Automatic and transparent I/O optimization with storage
integrated application runtime support,” in Proceedings of the 10th
Parallel Data Storage Workshop (PDSW’15), 2015, pp. 49–54.

[13] L. Yan, K. Chang, O. Bel, E. L. Miller, and D. D. Long, “CAPES:
Unsupervised storage performance tuning using neural network-based
deep reinforcement learning,” in International conference for High
Performance Computing, Networking, Storage and Analysis (SC’17),
2017.

[14] C. Zhen, V. Tarasov, S. Tiwari, and E. Zadok, “Towards better under-
standing of black-box auto-tuning: A comparative analysis for storage
systems,” in USENIX Annual Technical Conference (ATC’18), 2018.

[15] C. Zhen, G. Kuenning, and E. Zadok, “Carver: Finding important
parameters for storage system tuning,” in USENIX Conference on File
and Storage Technologies (FAST’20), 2020.

[16] J. Bhimani, A. Maruf, N. Mi, R. Pandurangan, and V. Balakrishnan,
“Auto-tuning parameters for emerging multi-stream flash-based storage
drives through new I/O pattern generations,” IEEE Transactions on
Computers, 2020.

[17] B. Xie, H. Tang, S. Byna, J. Hanley, Q. Koziol, T. Li, and S. Oral, “Battle
of the defaults: Extracting performance characteristics of HDF5 under
production load,” in 2021 IEEE/ACM 21st International Symposium on
Cluster, Cloud and Internet Computing (CCGrid). IEEE, 2021, pp.
51–60.

[18] H. Tang, Q. Koziol, S. Byna, J. Mainzer, and T. Li, “Enabling Trans-
parent Asynchronous I/O using Background Threads,” in PDSW’2019.

[19] J. Kates-Harbeck, A. Svyatkovskiy, and W. Tang, “Predicting disruptive
instabilities in controlled fusion plasmas through deep learning,” Nature,
vol. 568, no. 7753, pp. 526–531, 2019.

[20] B. Maldonado Puente, B. Kaul, C. Schuman, S. Young, and P. Mitchell,
“Dilute combustion control using spiking neural networks,” SAE Tech-
nical Paper Series, vol. 2021, no. 01, 2021.

[21] R. M. Patton, J. T. Johnston, S. R. Young, C. D. Schuman, T. E. Potok,
D. C. Rose, S.-H. Lim, J. Chae, L. Hou, S. Abousamra et al., “Exascale
deep learning to accelerate cancer research,” in 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 2019, pp. 1488–1496.

[22] G. Bateman, S.-H. Ku, J. Cummings, C.-S. Chang, and A. Kritz, “Xgc
documentation,” http://w3.physics.lehigh.edu/xgc/, 2016.

[23] B. Xie, Y. Huang, J. Chase, J. Y. Choi, S. Klasky, J. Lofstead, and
S. Oral, “Predicting output performance of a petascale supercomputer,”
in HPDC’17, 2017.

[24] B. Xie, Z. Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral,
S. S. Vazhkudai, and F. Wang, “Interpreting write performance of
supercomputer i/o systems with regression models,” in IPDPS’21, 2021.

[25] K. Kumaran, “Introduction to Mira,” in Code for Q Workshop, 2016.
[26] J. F. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. A. Oldfield,

T. Kordenbrock, K. Schwan, and M. Wolf, “Managing variability in
the IO performance of petascale storage systems,” in Conference on
High Performance Computing Networking, Storage and Analysis, SC

2010, New Orleans, LA, USA, November 13-19, 2010. IEEE, 2010,
pp. 1–12. [Online]. Available: https://doi.org/10.1109/SC.2010.32

[27] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in SC, 2012.

[28] B. Xie, S. Oral, C. Zimmer, J. Y. Choi, D. Dillow, S. Klasky, J. Lofstead,
N. Podhorszki, and J. S. Chase, “Characterizing output bottlenecks of a
production supercomputer: Analysis and implications,” ACM Transac-
tions on Storage, 2020.

[29] B. Xie, Z. Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral,
S. Vazhkudai, and F. Wang, “Applying machine learning to understand
write performance of large-scale parallel filesystems,” in PDSW, 2019.

[30] G. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. Wright,
“A year in the life of a parallel file system,” in International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC’18), 2018.

[31] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic, and
J. Woodring, “Jitter-free co-processing on a prototype exascale storage
stack,” in 2012 IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST), 2012, pp. 1–5.

[32] B. team, “BeeGFS:the leading parallel file system,” https://www.beegfs.
io/c/, 2021.

[33] W.-k. Liao and A. Choudhary, “Dynamically adapting file domain
partitioning methods for collective I/O based on underlying parallel file
system locking protocols,” in SC, 2008, pp. 1–12.

[34] Y. Chen, X.-H. Sun, R. Thakur, P. C. Roth, and W. D. Gropp, “LACIO:
A new collective I/O strategy for parallel I/O systems,” in 2011 IEEE
International Parallel & Distributed Processing Symposium, 2011, pp.
794–804.

[35] W. Yu, J. S. Vetter, and H. S. Oral, “Performance characterization and
optimization of parallel I/O on the Cray XT,” in IPDPS, 2008, pp. 1–11.

[36] S. Byna, R. Sisneros, K. Chadalavada, and Q. Koziol, “Tuning parallel
I/O on Blue Waters for writing 10 trillion particles,” CUG, 2015.

[37] “HPC IO Benchmark Repository,” https://github.com/hpc/ior.
[38] D. Hoaglin, F. Mosteller, and J. Tukey, Understanding robust and

exploratory data analysis, 2000, no. Sirsi) i9780471384915.
[39] Y. Ying and M. Pontil, “Online gradient descent learning algorithms,”

Foundations of Computational Mathematics, vol. 8, no. 5, pp. 561–596,
2008.

[40] B. Xie, Q. Cao, M. Kunjir, L. Wan, J. Chase, A. Mandal, and M. Rynge,
“WIRE: Resource-efficient scaling with online prediction for DAG-
based workflows,” in IEEE Cluster 2021. IEEE, 2021, pp. 1–10.

6

https://csmd.ornl.gov/adios
https://csmd.ornl.gov/adios
http://w3.physics.lehigh.edu/xgc/
https://doi.org/10.1109/SC.2010.32
https://www.beegfs.io/c/
https://www.beegfs.io/c/
https://github.com/hpc/ior

	Introduction
	HPC I/O Stack
	Scientific I/O in Production Codes
	Supercomputer I/O Subsystems
	I/O Libraries in HPC
	Related Work

	Autotuning I/O in HPC
	A Statistical I/O Benchmarking Method
	I/O benchmarking
	Statistical analysis

	SCTuner Runtime
	Dynamic Parameter Setting

	Preliminary Results
	Experiment Setup
	Clustering Results
	Configuration Results

	Conclusion
	References

